Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 11(19)2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36230991

RESUMEN

The objective of this study was to investigate the response of the photosynthetic apparatus of the Venus flytrap (Dionaea muscipula J. Ellis) to UV-A radiation stress as well as the role of selected secondary metabolites in this process. Plants were subjected to 24 h UV-A treatment. Subsequently, chl a fluorescence and gas exchange were measured in living plants. On the collected material, analyses of the photosynthetic pigments and photosynthetic apparatus proteins content, as well as the contents and activity of selected antioxidants, were performed. Measurements and analyses were carried out immediately after the stress treatment (UV plants) and another 24 h after the termination of UV-A exposure (recovery plants). UV plants showed no changes in the structure and function of their photosynthetic apparatus and increased contents and activities of some antioxidants, which led to efficient CO2 carboxylation, while, in recovery plants, a disruption of electron flow was observed, resulting in lower photosynthesis efficiency. Our results revealed that D. muscipula plants underwent two phases of adjustment to UV-A radiation. The first was a regulatory phase related to the exploitation of available mechanisms to prevent the over-reduction of PSII RC. In addition, UV plants increased the accumulation of plumbagin as a potential component of a protective mechanism against the disruption of redox homeostasis. The second was an acclimatization phase initiated after the running down of the regulatory process and decrease in photosynthesis efficiency.


Asunto(s)
Droseraceae , Aclimatación , Antioxidantes/metabolismo , Dióxido de Carbono , Droseraceae/metabolismo , Fotosíntesis/fisiología , Plantas/metabolismo , Rayos Ultravioleta
2.
J Agric Food Chem ; 70(37): 11652-11666, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36098631

RESUMEN

Umami taste receptor type 1 member 1/3 (T1R1/T1R3) heterodimer has multiple ligand-binding sites, most of which are located in T1R1-Venus flytrap domain (T1R1-VFT). However, the critical binding process of T1R1-VFT/umami ligands remains largely unknown. Herein, T1R1-VFT was prepared with a sufficient amount and functional activity, and its binding characteristics with typical umami molecules (monosodium l-glutamate, disodium succinate, beefy meaty peptide, and inosine-5'-monophosphate) were explored via multispectroscopic techniques and molecular dynamics simulation. The results showed that, driven mainly by hydrogen bond, van der Waals forces, and electrostatic interactions, T1R1-VFT bound to umami compound at 1:1 (stoichiometric interaction) and formed T1R1-VFT/ligand complex (static fluorescence quenching) with a weak binding affinity (Ka values: 252 ± 19 to 1169 ± 112 M-1). The binding process was spontaneous and exothermic (ΔG, -17.72 to -14.26 kJ mol-1; ΔH, -23.86 to -12.11 kJ mol-1) and induced conformational changes of T1R1-VFT, which was mainly reflected in slight unfolding of α-helix (Δα-helix < 0) and polypeptide chain backbone structure. Meanwhile, the binding of the four ligands stabilized the active conformation of the T1R1-VFT pocket. This work provides insight into the binding interaction between T1R1-VFT/umami ligands and improves understanding of how umami receptor recognizes specific ligand molecules.


Asunto(s)
Droseraceae , Receptores Acoplados a Proteínas G , Droseraceae/metabolismo , Inosina , Ligandos , Péptidos/química , Receptores Acoplados a Proteínas G/metabolismo , Glutamato de Sodio , Succinatos , Gusto
3.
Cells ; 11(11)2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35681512

RESUMEN

Chronic psychosocial stress participates prominently in the etiology of various psychiatric conditions and comorbid somatic pathologies; however, suitable pharmacotherapy of these disorders is still of high medical need. During the last few decades, research on mGlu receptors advanced remarkably and much attention was given to the mGlu7 subtype. Here, genetic mGlu7 ablation, short-term pharmacological mGlu7 blockade, as well as siRNA-mediated knockdown of mGlu7 were shown to result in an acute anti-stress, antidepressant- and anxiolytic-like phenotype in mice. Moreover, we recently revealed a prominent stress-protective effect of genetic mGlu7 ablation also with respect to chronic psychosocial stress. In addition, we are able to demonstrate in the present study that the chronic pharmacological blockade of mGlu7 interferes with various chronic stress-induced alterations. For this, we used the chronic subordinate colony housing (CSC), a mouse model of chronic male subordination, in combination with chronic treatment with the mGlu7-selective orthosteric-like antagonist XAP044 (7-hydroxy-3-(4-iodophenoxy)-4H-chromen-4-one). Interestingly, XAP044 dose-dependently ameliorates hypothalamic-pituitary-adrenal axis dysfunctions, thymus atrophy, as well as the CSC-induced increase in innate anxiety. Taken together, our findings provide further evidence for the role of mGlu7 in chronic psychosocial stress-induced alterations and suggests the pharmacological blockade of mGlu7 as a promising therapeutic approach for the treatment of chronic stress-related pathologies in men.


Asunto(s)
Droseraceae , Receptores de Glutamato Metabotrópico , Animales , Droseraceae/metabolismo , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Masculino , Ratones , Fenotipo , Sistema Hipófiso-Suprarrenal/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo
4.
Cells ; 11(3)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35159395

RESUMEN

The arabinogalactan proteins (AGP) play important roles in plant growth and developmental processes. However, to the best of our knowledge, there is no information on the spatial distribution of AGP in the plant organs and tissues of carnivorous plants during their carnivorous cycle. The Dionaea muscipula trap forms an "external stomach" and is equipped with an effective digestive-absorbing system. Because its digestive glands are composed of specialized cells, the hypothesis that their cell walls are also very specialized in terms of their composition (AGP) compared to the cell wall of the trap epidermal and parenchyma cells was tested. Another aim of this study was to determine whether there is a spatio-temporal distribution of the AGP in the digestive glands during the secretory cycle of D. muscipula. Antibodies that act against AGPs, including JIM8, JIM13 and JIM14, were used. The localization of the examined compounds was determined using immunohistochemistry techniques and immunogold labeling. In both the un-fed and fed traps, there was an accumulation of AGP in the cell walls of the gland secretory cells. The epitope, which is recognized by JIM14, was a useful marker of the digestive glands. The secretory cells of the D. muscipula digestive glands are transfer cells and an accumulation of specific AGP was at the site where the cell wall labyrinth occurred. Immunogold labeling confirmed an occurrence of AGP in the cell wall ingrowths. There were differences in the AGP occurrence (labeled with JIM8 and JIM13) in the cell walls of the gland secretory cells between the unfed and fed traps.


Asunto(s)
Droseraceae , Pared Celular/metabolismo , Droseraceae/metabolismo , Mucoproteínas , Proteínas de Plantas/metabolismo
5.
BMC Plant Biol ; 21(1): 564, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34844562

RESUMEN

BACKGROUND: Plant transformation with rol oncogenes derived from wild strains of Rhizobium rhizogenes is a popular biotechnology tool. Transformation effects depend on the type of rol gene, expression level, and the number of gene copies incorporated into the plant's genomic DNA. Although rol oncogenes are known as inducers of plant secondary metabolism, little is known about the physiological response of plants subjected to transformation. RESULTS: In this study, the physiological consequences of rolB oncogene incorporation into the DNA of Dionaea muscipula J. Ellis was evaluated at the level of primary and secondary metabolism. Examination of the teratoma (transformed shoots) cultures of two different clones (K and L) showed two different strategies for dealing with the presence of the rolB gene. Clone K showed an increased ratio of free fatty acids to lipids, superoxide dismutase activity, synthesis of the oxidised form of glutathione, and total pool of glutathione and carotenoids, in comparison to non-transformed plants (control). Clone L was characterised by increased accumulation of malondialdehyde, proline, activity of superoxide dismutase and catalase, total pool of glutathione, ratio of reduced form of glutathione to oxidised form, and accumulation of selected phenolic acids. Moreover, clone L had an enhanced ratio of total triglycerides to lipids and accumulated saccharose, fructose, glucose, and tyrosine. CONCLUSIONS: This study showed that plant transformation with the rolB oncogene derived from R. rhizogenes induces a pleiotropic effect in plant tissue after transformation. Examination of D. muscipula plant in the context of transformation with wild strains of R. rhizogenes can be a new source of knowledge about primary and secondary metabolites in transgenic organisms.


Asunto(s)
Agrobacterium/metabolismo , Proteínas Bacterianas/metabolismo , Droseraceae/metabolismo , Plantas Modificadas Genéticamente , Transformación Genética , Agrobacterium/genética , Proteínas Bacterianas/genética , Metabolismo de los Hidratos de Carbono , Carotenoides , Catalasa/genética , Catalasa/metabolismo , ADN de Plantas , Droseraceae/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Metabolismo de los Lípidos , Malondialdehído , Oncogenes , Peroxidasa/genética , Peroxidasa/metabolismo , Fenoles/metabolismo , Superóxido Dismutasa/metabolismo , Tirosina/metabolismo
6.
J Photochem Photobiol B ; 224: 112308, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34543848

RESUMEN

The most abundant active compound in Droseraceae is plumbagin, a naphthoquinone widely used for medical purposes due to its antimicrobial, antitussive, antimalarial and anticancer properties. In this work, we created a light-emitting diode (LED) based culture illumination setup as an alternative to fluorescent lamps traditionally used as a light source in plant in vitro cultures. The plants of Drosera binata and Drosera peltata cultured under LED illumination grew equally well and produced similar amounts of biologically active compounds as plants grown under fluorescent lamps. The plants were cultured on two media differing in mineral composition, sucrose content and pH. Secondary metabolites were extracted with ethanol from the plants after harvesting. The extracts were subjected to HPLC and microbiological analyses. We observed differences in morphology and secondary metabolism between plants of the same species grown on different media. However, we did not note significant changes in secondary metabolite yield under assessed lighting conditions. We propose LEDs as a more efficient, eco-friendly and economically reasonable source of light for big scale in vitro production of plumbagin in Drosera species than fluorescent lamps.


Asunto(s)
Droseraceae/efectos de la radiación , Luz , Iluminación/instrumentación , Naftoquinonas/metabolismo , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Candida albicans/efectos de los fármacos , Medios de Cultivo , Droseraceae/crecimiento & desarrollo , Droseraceae/metabolismo , Pruebas de Sensibilidad Microbiana , Salmonella enterica/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
7.
Elife ; 102021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33724187

RESUMEN

In response to touch, some carnivorous plants such as the Venus flytrap have evolved spectacular movements to capture animals for nutrient acquisition. However, the molecules that confer this sensitivity remain unknown. We used comparative transcriptomics to show that expression of three genes encoding homologs of the MscS-Like (MSL) and OSCA/TMEM63 family of mechanosensitive ion channels are localized to touch-sensitive trigger hairs of Venus flytrap. We focus here on the candidate with the most enriched expression in trigger hairs, the MSL homolog FLYCATCHER1 (FLYC1). We show that FLYC1 transcripts are localized to mechanosensory cells within the trigger hair, transfecting FLYC1 induces chloride-permeable stretch-activated currents in naïve cells, and transcripts coding for FLYC1 homologs are expressed in touch-sensing cells of Cape sundew, a related carnivorous plant of the Droseraceae family. Our data suggest that the mechanism of prey recognition in carnivorous Droseraceae evolved by co-opting ancestral mechanosensitive ion channels to sense touch.


Asunto(s)
Planta Carnívora/genética , Droseraceae/genética , Canales Iónicos/genética , Proteínas de Plantas/genética , Tacto , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Planta Carnívora/metabolismo , Droseraceae/metabolismo , Genes de Plantas , Canales Iónicos/metabolismo , Transporte Iónico/genética , Proteínas de Plantas/metabolismo , Transcriptoma
8.
PLoS Biol ; 18(12): e3000964, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33296375

RESUMEN

The carnivorous plant Dionaea muscipula harbors multicellular trigger hairs designed to sense mechanical stimuli upon contact with animal prey. At the base of the trigger hair, mechanosensation is transduced into an all-or-nothing action potential (AP) that spreads all over the trap, ultimately leading to trap closure and prey capture. To reveal the molecular basis for the unique functional repertoire of this mechanoresponsive plant structure, we determined the transcriptome of D. muscipula's trigger hair. Among the genes that were found to be highly specific to the trigger hair, the Shaker-type channel KDM1 was electrophysiologically characterized as a hyperpolarization- and acid-activated K+-selective channel, thus allowing the reuptake of K+ ions into the trigger hair's sensory cells during the hyperpolarization phase of the AP. During trap development, the increased electrical excitability of the trigger hair is associated with the transcriptional induction of KDM1. Conversely, when KDM1 is blocked by Cs+ in adult traps, the initiation of APs in response to trigger hair deflection is reduced, and trap closure is suppressed. KDM1 thus plays a dominant role in K+ homeostasis in the context of AP and turgor formation underlying the mechanosensation of trigger hair cells and thus D. muscipula's hapto-electric signaling.


Asunto(s)
Droseraceae/genética , Droseraceae/metabolismo , Canales de Potasio/metabolismo , Potenciales de Acción/fisiología , Transporte Biológico , Fenómenos Electrofisiológicos , Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Iones , Mecanorreceptores/metabolismo , Mecanorreceptores/fisiología , Hojas de la Planta/fisiología , Potasio/metabolismo , Canales de Potasio/fisiología , Transducción de Señal , Transcriptoma/genética
9.
Nat Plants ; 6(10): 1219-1224, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33020606

RESUMEN

The leaves of the carnivorous plant Venus flytrap, Dionaea muscipula (Dionaea) close rapidly to capture insect prey. The closure response usually requires two successive mechanical stimuli to sensory hairs on the leaf blade within approximately 30 s (refs. 1-4). An unknown biological system in Dionaea is thought to memorize the first stimulus and transduce the signal from the sensory hair to the leaf blade2. Here, we link signal memory to calcium dynamics using transgenic Dionaea expressing a Ca2+ sensor. Stimulation of a sensory hair caused an increase in cytosolic Ca2+ concentration ([Ca2+]cyt) starting in the sensory hair and spreading to the leaf blade. A second stimulus increased [Ca2+]cyt to an even higher level, meeting a threshold that is correlated to the leaf blade closure. Because [Ca2+]cyt gradually decreased after the first stimulus, the [Ca2+]cyt increase induced by the second stimulus was insufficient to meet the putative threshold for movement after about 30 s. The Ca2+ wave triggered by mechanical stimulation moved an order of magnitude faster than that induced by wounding in petioles of Arabidopsis thaliana5 and Dionaea. The capacity for rapid movement has evolved repeatedly in flowering plants. This study opens a path to investigate the role of Ca2+ in plant movement mechanisms and their evolution.


Asunto(s)
Calcio/metabolismo , Droseraceae/metabolismo , Estimulación Física , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente
10.
J Photochem Photobiol B ; 201: 111679, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31710926

RESUMEN

Plants from the family Droseraceae, especially Drosera sp. and Dionaea sp., are naturally rich in phenolic derivatives such as plumbagin, among others. Plumbagin is known both for its pharmacological significance and its protective properties against light stress. Light stress - high light intensity or/and light spectral composition - activates plants' response mechanisms including, among others, hormonal (salicylic acid, jasmonic acid) pathways and secondary metabolite (phenolic compounds, proline) pathways. Short-wavelength radiation, due to its high energy, will induce the synthesis of protective secondary metabolites, including those with pharmaceutical properties. The aim of the study was to describe and compare acclimation strategies of Drosera peltata and Dionaea muscipula to blue-red light in the context of phenolic compound accumulation, and salicylic acid, jasmonic acid and proline synthesis. For the first time, differences in the responses of D. muscipula and D. peltata to blue-red light (in the ratio 6:1) were established. In Dionaea sp., it was associated with the use of redox equivalents (in particular, plastoquinone pool) for the synthesis of primary metabolites used in the process of growth and development. In Drosera sp., a rapid adjustment of redox state led to the synthesis of secondary metabolites, constituting a reservoir of carbon skeletons and allowing for a quick defence response to stress factors. In both species, blue-red light did not induce the jasmonic acid pathway. However, the salicylic acid pathway was induced as an alternative to the phenolic compound synthesis pathway. Nevertheless, the applied blue-red light was not an effective elicitor of phenolic compounds in the plants examined.


Asunto(s)
Droseraceae/efectos de la radiación , Luz , Fenoles/metabolismo , Catalasa/metabolismo , Clorofila/química , Droseraceae/química , Droseraceae/metabolismo , Peroxidación de Lípido , Malondialdehído/análisis , Peroxidasas/metabolismo , Fenoles/química , Prolina/química
11.
J Exp Bot ; 70(14): 3549-3560, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31112593

RESUMEN

Plants are dynamic. They adjust their shape for feeding, defence, and reproduction. Such plant movements are critical for their survival. We present selected examples covering a range of movements from single cell to tissue level and over a range of time scales. We focus on reversible turgor-driven shape changes. Recent insights into the mechanisms of stomata, bladderwort, the waterwheel, and the Venus flytrap are presented. The underlying physical principles (turgor, osmosis, membrane permeability, wall stress, snap buckling, and elastic instability) are highlighted, and advances in our understanding of these processes are summarized.


Asunto(s)
Droseraceae/química , Agua/metabolismo , Droseraceae/metabolismo , Modelos Biológicos , Ósmosis , Agua/química
12.
Plant Biol (Stuttg) ; 19(6): 886-895, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28727249

RESUMEN

Amino acids represent an important component in the diet of the Venus flytrap (Dionaea muscipula), and supply plants with much needed nitrogen resources upon capture of insect prey. Little is known about the significance of prey-derived carbon backbones of amino acids for the success of Dionaea's carnivorous life-style. The present study aimed at characterizing the metabolic fate of 15 N and 13 C in amino acids acquired from double-labeled insect powder. We tracked changes in plant amino acid pools and their δ13 C- and δ15 N-signatures over a period of five weeks after feeding, as affected by contrasting feeding intensity and tissue type (i.e., fed and non-fed traps and attached petioles of Dionaea). Isotope signatures (i.e., δ13 C and δ15 N) of plant amino acid pools were strongly correlated, explaining 60% of observed variation. Residual variation was related to contrasting effects of tissue type, feeding intensity and elapsed time since feeding. Synthesis of nitrogen-rich transport compounds (i.e., amides) during peak time of prey digestion increased 15 N- relative to 13 C- abundances in amino acid pools. After completion of prey digestion, 13 C in amino acid pools was progressively exchanged for newly fixed 12 C. The latter process was most evident for non-fed traps and attached petioles of plants that had received ample insect powder. We argue that prey-derived amino acids contribute to respiratory energy gain and loss of 13 CO2 during conversion into transport compounds (i.e., 2 days after feeding), and that amino-nitrogen helps boost photosynthetic carbon gain later on (i.e., 5 weeks after feeding).


Asunto(s)
Aminoácidos/metabolismo , Droseraceae/metabolismo , Radioisótopos de Carbono/metabolismo , Redes y Vías Metabólicas , Radioisótopos de Nitrógeno/metabolismo
14.
New Phytol ; 214(2): 597-606, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28042877

RESUMEN

The present study was performed to elucidate the fate of carbon (C) and nitrogen (N) derived from protein of prey caught by carnivorous Dionaea muscipula. For this, traps were fed 13 C/15 N-glutamine (Gln). The release of 13 CO2 was continuously monitored by isotope ratio infrared spectrometry. After 46 h, the allocation of C and N label into different organs was determined and tissues were subjected to metabolome, proteome and transcriptome analyses. Nitrogen of Gln fed was already separated from its C skeleton in the decomposing fluid secreted by the traps. Most of the Gln-C and Gln-N recovered inside plants were localized in fed traps. Among nonfed organs, traps were a stronger sink for Gln-C compared to Gln-N, and roots were a stronger sink for Gln-N compared to Gln-C. A significant amount of the Gln-C was respired as indicated by 13 C-CO2 emission, enhanced levels of metabolites of respiratory Gln degradation and increased abundance of proteins of respiratory processes. Transcription analyses revealed constitutive expression of enzymes involved in Gln metabolism in traps. It appears that prey not only provides building blocks of cellular constituents of carnivorous Dionaea muscipula, but also is used for energy generation by respiratory amino acid degradation.


Asunto(s)
Aminoácidos/metabolismo , Carbono/metabolismo , Droseraceae/citología , Droseraceae/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Respiración de la Célula , Metaboloma , Isótopos de Nitrógeno/metabolismo , Proteínas de Plantas/metabolismo
15.
Genome Res ; 26(6): 812-25, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27197216

RESUMEN

Although the concept of botanical carnivory has been known since Darwin's time, the molecular mechanisms that allow animal feeding remain unknown, primarily due to a complete lack of genomic information. Here, we show that the transcriptomic landscape of the Dionaea trap is dramatically shifted toward signal transduction and nutrient transport upon insect feeding, with touch hormone signaling and protein secretion prevailing. At the same time, a massive induction of general defense responses is accompanied by the repression of cell death-related genes/processes. We hypothesize that the carnivory syndrome of Dionaea evolved by exaptation of ancient defense pathways, replacing cell death with nutrient acquisition.


Asunto(s)
Droseraceae/genética , Droseraceae/citología , Droseraceae/metabolismo , Genoma de Planta , Herbivoria , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal , Transcriptoma
16.
Mol Plant ; 9(3): 428-436, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26455461

RESUMEN

The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe surface. DmHKT1 expression and sodium uptake activity is induced upon prey contact. Here, we analyzed the HKT1 properties required for prey sodium osmolyte management of carnivorous Dionaea. Analyses were based on homology modeling, generation of model-derived point mutants, and their functional testing in Xenopus oocytes. We showed that the wild-type HKT1 and its Na(+)- and K(+)-permeable mutants function as ion channels rather than K(+) transporters driven by proton or sodium gradients. These structural and biophysical features of a high-capacity, Na(+)-selective ion channel enable Dionaea glands to manage prey-derived sodium loads without confounding the action potential-based information management of the flytrap.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Droseraceae/metabolismo , Fenómenos Electrofisiológicos , Proteínas de Plantas/metabolismo , Sodio/metabolismo , Animales , Transporte Biológico , Proteínas de Transporte de Catión/genética , Droseraceae/genética , Droseraceae/fisiología , Mutación , Proteínas de Plantas/genética , Conducta Predatoria
17.
Proc Natl Acad Sci U S A ; 112(23): 7309-14, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-25997445

RESUMEN

The Darwin plant Dionaea muscipula is able to grow on mineral-poor soil, because it gains essential nutrients from captured animal prey. Given that no nutrients remain in the trap when it opens after the consumption of an animal meal, we here asked the question of how Dionaea sequesters prey-derived potassium. We show that prey capture triggers expression of a K(+) uptake system in the Venus flytrap. In search of K(+) transporters endowed with adequate properties for this role, we screened a Dionaea expressed sequence tag (EST) database and identified DmKT1 and DmHAK5 as candidates. On insect and touch hormone stimulation, the number of transcripts of these transporters increased in flytraps. After cRNA injection of K(+)-transporter genes into Xenopus oocytes, however, both putative K(+) transporters remained silent. Assuming that calcium sensor kinases are regulating Arabidopsis K(+) transporter 1 (AKT1), we coexpressed the putative K(+) transporters with a large set of kinases and identified the CBL9-CIPK23 pair as the major activating complex for both transporters in Dionaea K(+) uptake. DmKT1 was found to be a K(+)-selective channel of voltage-dependent high capacity and low affinity, whereas DmHAK5 was identified as the first, to our knowledge, proton-driven, high-affinity potassium transporter with weak selectivity. When the Venus flytrap is processing its prey, the gland cell membrane potential is maintained around -120 mV, and the apoplast is acidified to pH 3. These conditions in the green stomach formed by the closed flytrap allow DmKT1 and DmHAK5 to acquire prey-derived K(+), reducing its concentration from millimolar levels down to trace levels.


Asunto(s)
Calcio/metabolismo , Droseraceae/metabolismo , Potasio/metabolismo , Proteínas Quinasas/metabolismo , Animales , Droseraceae/citología , Droseraceae/enzimología , Droseraceae/genética , Etiquetas de Secuencia Expresada , Genes de Plantas , Concentración de Iones de Hidrógeno , Transporte Iónico , Transducción de Señal , Xenopus
18.
PLoS Pathog ; 11(3): e1004700, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25738876

RESUMEN

Two-component systems (TCS) represent major signal-transduction pathways for adaptation to environmental conditions, and regulate many aspects of bacterial physiology. In the whooping cough agent Bordetella pertussis, the TCS BvgAS controls the virulence regulon, and is therefore critical for pathogenicity. BvgS is a prototypical TCS sensor-kinase with tandem periplasmic Venus flytrap (VFT) domains. VFT are bi-lobed domains that typically close around specific ligands using clamshell motions. We report the X-ray structure of the periplasmic moiety of BvgS, an intricate homodimer with a novel architecture. By combining site-directed mutagenesis, functional analyses and molecular modeling, we show that the conformation of the periplasmic moiety determines the state of BvgS activity. The intertwined structure of the periplasmic portion and the different conformation and dynamics of its mobile, membrane-distal VFT1 domains, and closed, membrane-proximal VFT2 domains, exert a conformational strain onto the transmembrane helices, which sets the cytoplasmic moiety in a kinase-on state by default corresponding to the virulent phase of the bacterium. Signaling the presence of negative signals perceived by the periplasmic domains implies a shift of BvgS to a distinct state of conformation and activity, corresponding to the avirulent phase. The response to negative modulation depends on the integrity of the periplasmic dimer, indicating that the shift to the kinase-off state implies a concerted conformational transition. This work lays the bases to understand virulence regulation in Bordetella. As homologous sensor-kinases control virulence features of diverse bacterial pathogens, the BvgS structure and mechanism may pave the way for new modes of targeted therapeutic interventions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Droseraceae/metabolismo , Periplasma/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/química , Bordetella pertussis/metabolismo , Cristalografía por Rayos X , Droseraceae/química , Modelos Moleculares , Mutagénesis Sitio-Dirigida/métodos , Transducción de Señal/fisiología , Factores de Transcripción/química , Virulencia
19.
New Phytol ; 205(3): 1320-1329, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25345872

RESUMEN

Carnivorous Dionaea muscipula operates active snap traps for nutrient acquisition from prey; so what is the role of D. muscipula's reduced root system? We studied the capacity for nitrogen (N) acquisition via traps, and its effect on plant allometry; the capacity of roots to absorb NO3(-), NH4(+) and glutamine from the soil solution; and the fate and interaction of foliar- and root-acquired N. Feeding D. muscipula snap traps with insects had little effect on the root : shoot ratio, but promoted petiole relative to trap growth. Large amounts of NH4(+) and glutamine were absorbed upon root feeding. The high capacity for root N uptake was maintained upon feeding traps with glutamine. High root acquisition of NH4(+) was mediated by 2.5-fold higher expression of the NH4(+) transporter DmAMT1 in the roots compared with the traps. Electrophysiological studies confirmed a high constitutive capacity for NH4(+) uptake by roots. Glutamine feeding of traps inhibited the influx of (15)N from root-absorbed (15)N/(13)C-glutamine into these traps, but not that of (13)C. Apparently, fed traps turned into carbon sinks that even acquired organic carbon from roots. N acquisition at the whole-plant level is fundamentally different in D. muscipula compared with noncarnivorous species, where foliar N influx down-regulates N uptake by roots.


Asunto(s)
Droseraceae/metabolismo , Nitrógeno/metabolismo , Fenómenos Fisiológicos de la Nutrición , Raíces de Plantas/metabolismo , Compuestos de Amonio/metabolismo , Animales , Isótopos de Carbono , Insectos , Datos de Secuencia Molecular , Isótopos de Nitrógeno , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Conducta Predatoria
20.
Ann Bot ; 114(1): 125-33, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24817095

RESUMEN

BACKGROUND AND AIMS: Rootless carnivorous plants of the genus Utricularia are important components of many standing waters worldwide, as well as suitable model organisms for studying plant-microbe interactions. In this study, an investigation was made of the importance of microbial dinitrogen (N2) fixation in the N acquisition of four aquatic Utricularia species and another aquatic carnivorous plant, Aldrovanda vesiculosa. METHODS: 16S rRNA amplicon sequencing was used to assess the presence of micro-organisms with known ability to fix N2. Next-generation sequencing provided information on the expression of N2 fixation-associated genes. N2 fixation rates were measured following (15)N2-labelling and were used to calculate the plant assimilation rate of microbially fixed N2. KEY RESULTS: Utricularia traps were confirmed as primary sites of N2 fixation, with up to 16 % of the plant-associated microbial community consisting of bacteria capable of fixing N2. Of these, rhizobia were the most abundant group. Nitrogen fixation rates increased with increasing shoot age, but never exceeded 1·3 µmol N g(-1) d. mass d(-1). Plant assimilation rates of fixed N2 were detectable and significant, but this fraction formed less than 1 % of daily plant N gain. Although trap fluid provides conditions favourable for microbial N2 fixation, levels of nif gene transcription comprised <0·01 % of the total prokaryotic transcripts. CONCLUSIONS: It is hypothesized that the reason for limited N2 fixation in aquatic Utricularia, despite the large potential capacity, is the high concentration of NH4-N (2·0-4·3 mg L(-1)) in the trap fluid. Resulting from fast turnover of organic detritus, it probably inhibits N2 fixation in most of the microorganisms present. Nitrogen fixation is not expected to contribute significantly to N nutrition of aquatic carnivorous plants under their typical growth conditions; however, on an annual basis the plant-microbe system can supply nitrogen in the order of hundreds of mg m(-2) into the nutrient-limited littoral zone, where it may thus represent an important N source.


Asunto(s)
Bacterias/aislamiento & purificación , Droseraceae/metabolismo , Magnoliopsida/metabolismo , Fijación del Nitrógeno , Nitrógeno/metabolismo , Compuestos de Amonio/análisis , Bacterias/genética , Bacterias/metabolismo , Secuencia de Bases , Droseraceae/microbiología , Ecología , Ecosistema , Magnoliopsida/microbiología , Datos de Secuencia Molecular , Isótopos de Nitrógeno , Brotes de la Planta/metabolismo , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ARN , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...